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Abstract
Within the framework of gauge field theory a general scheme for describing
sound propagation in harmonic crystals with dislocations is worked out. As
an application the theory confirms the appearance of local elastic vibrations
in the strain field of edge dislocations and their absence in the case of screw
dislocations. When the theory is applied to the scattering of sound waves
on a screw dislocation, one recovers the appearance of Aharonov–Bohm
interferences.

Elastic distortion fields, generated in harmonic crystals by frozen-in topological defects, can,
in the continuum limit, be described by two different gauge theories. Both will be discussed
here in a form exclusively designed to address the presence of dislocations.

The first version, proposed by one of us [1], relies on the Euclidean symmetry of the elastic
energy density in the undistorted reference state. Accordingly, the gauge group consists of
linear transformations of the Lagrange coordinates, representing the positions of material points
in the reference state, at constant Euler coordinates which represent the displaced positions in
the strained material.

In contrast, the second approach, presented by Kadic and Edelen [2], uses a gauge group
consisting of linear transformations of the Euler coordinates at fixed values of the Lagrange
coordinates. Accordingly, this type of gauge transformation operates as in the case of an
internal symmetry. An apparent rationale of the procedure [2] is that, independently of the
symmetry of the material parameters, the strain tensor of the reference system is already
invariant under such transformations.
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The merit of the approach [1] is that it incorporates some important nonlinear couplings
between dislocation-induced and externally generated distortions, including those due to sound
waves with independently tunable amplitudes. Only if both kinds of distortion fields are treated
as perturbations of equal magnitude does one recover in linear order the results of [2].

This observation applies to practically all subsequent papers, devoted to the description of
topological defects using gauge fields, and, to our belief, represents an unnecessary limitation
of the theories. Out of the large number of publications of that type we pick out the work
by Osipov, since it also includes a discussion of vibrational states in topologically distorted
media [3]. By comparing his results with ours for the case of a single screw dislocation, one
can see what kinds of effects may be overlooked in such treatments.

We also mention a more recent paper by Lazar [4] which relies on the gauge theory of
gravity, as formulated by Hehl et al [5]. Since this formulation uses the picture of an internal
gauge symmetry, the Lazar procedure is, in this respect, also along the lines of the Kadic–
Edelen approach.

In contrast to that, the theory of [1] follows the lines of the gauge theory of gravity given by
Kibble [6] which starts from the group of external Poincaré transformations. In the context of
dislocation theory the compensating field in [6] turns out to correspond directly to the distortion
tensor in the differential-geometric approach to dislocation theory given by Kröner [7]. Due to
this, we need not discuss the free part of the compensating field in the Lagrangian, but instead
can adopt the results for the distortion tensor, following [7] for special defect configurations.

In order to describe the procedure in detail, we start from the expression for the elastic
energy density of the reference system,

e(x) = 1
2 εi j(x) ci jk� εk�(x), (1)

where, in a Cartesian frame,

ci jk� = λ δi jδk� + μ (δikδ j� + δi�δ jk) (2)

are the elastic constants of an isotropic medium with Lamé coefficients λ,μ, and where, in
terms of Lagrange and Euler coordinates x i , and X A,

εi j (x) ≡ 1
2

{[
∂i X A(x)

]
δAB

[
∂ j X B (x)

] − δi j
}

(3)

defines the strain tensor. The components of the Euler position vectors have been labelled with
capitals A, B , in order to indicate that they behave as scalars under linear transformations of
the Lagrange coordinates.

According to Kibble [6], the symmetry of the distorted medium under local coordinate
transformations can now be achieved by replacing the partial derivatives in the expression (3)
by covariant derivatives Dα ≡ Bi

α(x) ∂i where in [1] the compensating fields Bi
α(x) have been

identified with the defect-induced distortions, appearing in Kröner’s theory of dislocations [7].
Factors 1/(det B), converting local quantities into proper densities, will be suppressed in the
following, since they turn out to cancel in all relevant equations.

The result for the local elastic energy in the presence of the defects reads

E(x) = 1
2 εαβ(x) cαβγ δ εγ δ(x) (4)

where cαβγ δ is numerically identical to ci jk�, and where

εαβ(x) ≡ 1
2

{[
Dα X A(x)

]
δAB

[
Dβ X B(x)

] − δαβ

}
. (5)

In order to describe sound propagation in the distorted medium, we now allow in (5) a
time dependence of the Euler coordinate X A(x, t) and introduce a displacement field ui(x, t)
by writing X A(x, t) = δA

i x i + δi A ui (x, t). Then, in terms of the frozen-in strain field,

Eαβ(x) ≡ 1
2

[
Bi

α(x) δi j B j
β(x) − δαβ

]
, (6)
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the total strain is given by

εαβ(x, t) = Eαβ(x) + 1
2

[
Bi

α(x)Dβ + Bi
β(x)Dα

]
ui(x, t) + 1

2 [Dα ui(x, t)] δi j [Dβ u j(x, t)].
(7)

By an expansion of (7) to linear order in the quantities ∂ j ui and β i
α ≡ Bi

α −δi
α one recovers

the strain tensor, appearing in the Kadic–Edelen approach. The neglected higher order terms,
however, turn out to contribute in an essential way to the process of sound propagation.

Insertion of the full expression (7) into (4) implies E(x, t) = U(x) + W (x, t) where

U(x) ≡ 1
2 Eαβ(x) cαβγ δ Eγ δ(x) (8)

is the local energy of the dislocation-distorted background system, and, in the harmonic
approximation,

W (x, t) ≡ 1
2 [Dα ui(x, t)] Cαiβ j (x)

[
Dβu j(x, t)

]
(9)

with effective elastic coefficients

Cαiβ j (x) ≡ Bi
γ (x) cαγβδ B j

δ (x) + Sαβ(x) δi j . (10)

Here Sαβ ≡ cαβγ δ Eγ δ is the stress tensor due to the frozen-in defects which also enters the
equilibrium condition Dα ∂U/∂ Bi

α = Dα Sαβδi j B j
β = 0. The latter statement has, in fact, been

used in order to exclude in W linear terms in ui .
Since Dα ∂W/∂ Dαui measures the force exerted on a material point at x i , the wave

equation, following from (9), reads

ρ δi j ∂2
t u j(x, t) = Dα Cαiβ j (x) Dβ u j(x, t) (11)

where ρ is a constant mass parameter.
The result (11) is valid for arbitrary arrangements and kinds of dislocations in isotropic

materials. Whereas the topological nature of the defects is essentially hidden in the
covariant derivatives, the defect-induced changes of the elastic properties are contained in the
coefficients (10). It should be noted that in practical applications the core regions of the defects
in general require separate consideration [8].

As a first application we now consider the problem of localized vibrations in the strain
field of a single straight edge dislocation. For this special case the distortion field is that of a
two-dimensional defect in a plane, normal to the dislocation line. In a frame where this line
is chosen as the x3-axis, this means β3

α = β i
3 = ∂3β

i
α = 0. Due to translational symmetry

in the x3-direction the sound-wave displacement field, furthermore, consists of plane waves
ui (x, t) = vi (x1, x2) exp[i(kx3 − ωt)] where k is a free wavenumber.

Next, we note that βb
a with a, b = 1, 2 is of order b/r where b is the magnitude of the

Burgers vector, and r ≡ √
(x1)2 + (x2)2. If localized states of lateral size 1/κ exist, then, for

sufficiently large k, the ratio κ/k may, as in [8], serve as a second small parameter.
To leading order in an expansion in b/r and κ/k, equation (11) decouples into a

longitudinal part and a transverse part. In terms of the related sound velocities c‖ ≡√
(λ + 2μ)/ρ, c⊥ ≡ √

μ/ρ, the corresponding wave equations read (ω2 − c2
‖k2)v3 = 0, and

(ω2 − c2
⊥k2)va = 0, so the components v3 = 1, va = 0 form one of the eigenvectors of the

system.
In order to determine corrections to this eigenvector, we evaluate the wave equation for va

to first order. If the resulting expression va = (−i/k)∂av3 = O(κ/k) v3 is inserted into the
wave equation for v3, one finds, up to second order, the closed equation

[
∂2 + (ω/c‖)2 − k2 − V (r)

]
v3(r) = 0 (12)

3
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where r ≡ (x1, x2), ∂2 ≡ ∂2
1 + ∂2

2 , and, with the notation Tr E ≡ δab Eab,

V (r) ≡ (λk2/ρ c2
‖) Tr E(r). (13)

The result (12) resembles a Schrödinger equation with an attractive potential of strength
b/r in the dilatation region around the defect, analysed for a related topic by Lifshitz and
Pushkarov [9]. Using the explicit form Tr E = (b/2π)[2μ/(λ+2μ)] x2/[(x1)2 + (x2)2], valid
for the choice b = (b, 0, 0) of the Burgers vector, they found a discrete set of phonon bound
states.

It should be mentioned that a second mechanism for the possible appearance of localized
vibrations close to dislocation lines has been discussed [10]. This mechanism is due to changes
of elastic coefficients in the core region of dislocations which, however, is beyond the scope of
the present analysis.

We also point out that our derivation of the result (12) avoids using a scalar model where
the tensor of bare elastic constants as well as the displacement vector are replaced by scalar
quantities [8]. In particular, the ansatz va = 0, v3 = v, used e.g. in [3], fails to be a consistent
solution of the wave equation (11) for edge as well as for screw dislocations.

In the derivation of (12) we have effectively replaced the covariant derivatives by ordinary
derivatives, since, within our perturbation scheme, the differences Dα − ∂α only affect higher
order terms, not included in (12). This means that for localized vibrations close to an edge
dislocation the topological nature of the defect is of minor importance as compared to the
elastic deformations, described by the potential (13).

For screw dislocations it is essential, however, to keep the full covariant derivatives.
This follows from the fact that in the case of a straight dislocation line with Burgers
vector b = (0, 0, b), the distortion field βα

i has as the only nonzero components β3
1 (x) =

−(b/4π)∂2 ln [(x1)2 + (x2)2], and β3
2 (x) = (b/4π)∂1 ln [(x1)2 + (x2)2]. Using again

translational symmetry in the x3-direction, this leads, after replacing D3 = ∂3 by ik, to the
expressions

Da = ∂a + i ∂a�(x1, x2),

�(x1, x2) ≡ (kb/2π) arctan(x2/x1).
(14)

Since (14) effectively uses a Debye approximation in the x3-direction, kb can be of order
1, in which case the two contributions in Da have equal weight and thus should be retained
for both localized and scattering states. It should also be noted that (14) looks like a standard
covariant derivative in a fixed gauge.

The existence of localized vibrations in the strain field of a screw dislocation is not obvious,
since this type of defect apparently does not generate a region of lattice dilatation. In order to
clarify this problem within our approach, we copy the procedure used above for the case of an
edge dislocation.

To lowest order in b/r and κ/k one recovers the same eigenvector v3 = 1, va = 0 as
before. The first-order result for va now reads va = (−i/k)Dav3 + [μ/(λ + μ)]β3

a u3 which
again leads to a closed equation for v3.

A reduction to the form of a Schrödinger equation can in this case be achieved by
employing polar coordinates x1 = r cos φ, x2 = r sin φ. In the frame er = (cos φ, sin φ), eφ =
(− sin φ, cos φ) the components of the covariant derivative read Dr = ∂r , and

Dφ = 1

r

(
∂φ + i

kb

2π

)
. (15)

Returning from ik to ∂3, one observes that (15) reflects the spiral-staircase symmetry of the
screw dislocation. As pointed out by Kosevich [11], this symmetry implies a separation ansatz
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of the form

v3(r, φ) = χ(r) exp{i[m − kb/(2π)]φ} (16)

with integer m.
For the radial part we find the differential equation

[

∂2
r + 1

r
∂r +

(
ω

c‖

)2

− k2 − V (r)

]

χ(r) = 0 (17)

where, following from the relations Tr E = (b/2πr)2, and Dφv3 = i(m/r)v3, the potential
reads

V (r) ≡
[

c4
⊥

(c2
‖ − c2

⊥)c2
‖

(
kb

2π

)2

+ 2
c2
‖ + c2

⊥
c2
‖

(
kb

2π

)
m + m2

]
1

r 2
. (18)

Since this potential is repulsive for all known materials, we conclude that in our model localized
vibrational states do not exist in the strain field of a screw dislocation.

Results with the general structure (17) and (18) have previously been found by
Kosevich [11] within a scalar model which includes anharmonic elastic constants. These
replace the coefficients of order k2 and k in (18), and in some range allow localized states
with m = 0.

The last topic to be discussed is the scattering of a sound wave on a straight screw
dislocation. In this case the ratio κ/k can no longer serve as a small expansion parameter.
Our arguments, however, for keeping the full covariant derivatives still apply, in accordance
with the fact that the defect-generated topology of space is felt at arbitrary distances from the
dislocation line.

A perturbation scheme for the scattering process can now be organized by splitting the
elastic coefficients (10) into those of the reference system (2) and the rest which then is
considered as a perturbation. Such a procedure, incidentally mentioned by Brown [12], is
different from all previous approaches which, disregarding topological aspects, simply expand
around the wave equation of the bare reference system, as exemplified in [13].

Since, in our approach, topological effects are expected to emerge even in the lowest order
of our expansion, the discussion will be restricted here to this case. In terms of the covariant
operator D ≡ [D1, D2, ik] the related wave equation for v ≡ (v1, v2, v3) then reads

−ρ ω2v = (λ + μ)D(D · v) + μ D2v. (19)

Like in the standard procedure of solving equations of the type (19), we decompose v via
the identity

v = D
(
D · D−2v

)−D × (
D × D−2v

) ≡ v‖ + v⊥ (20)

into longitudinal and transverse components where (20) follows from the representation (14) in
the form

D = exp(−i�) [∂1, ∂2, ik] exp(i�). (21)

Here, D−2 means the inverse of the operator D2, and is explicitly given by an integral operator
with the kernel exp[−i�(r)](−1/2π)K0(k|r − r′|) exp[i�(r′)], involving the modified Bessel
function K0(kr).

Whereas, due to (21), all components of D commute with each other, commutation of D
with D−2 requires partial integrations which generate surface contributions. These, however,
vanish, if, following [11], the dislocation core is enclosed by a tube which is impenetrable to
phonons. Using this, the decomposition (20) leads to the independent wave equations

−ω2va = c2
a D2va, a = ‖,⊥ . (22)

5
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In a scattering event an incoming wave with wavevector [−qa, 0, k ] has the form

vin
a = sa exp(−i qa x1) exp[−i�(x1, 0)] (23)

where sa means a polarization vector. The constraints D × v‖ = D · v⊥ = 0 imply the two
possibilities s1

⊥ ∝ [k, 0, q⊥] and s2
⊥ ∝ [0, 1, 0], and s‖ ∝ [−q‖, 0, k].

Since, in the present approximation, polarizations are unaffected by the scattering process,
the problem gains some similarity with the famous phenomenon of electron scattering on a
magnetic flux line, discussed by Aharonov and Bohm [14]. Adopting their procedure, we
obtain for the scattered sound wave, far from the defect,

vsc
a = sa

eiqar

(2πqar)1/2
sin(kb/2)

eiφ/2

cos (φ/2)
. (24)

The result (24) has been derived, without any further approximation, from the wave
equation (19) which has previously been established in a different way by Serebryanyi [15].
A behaviour similar to (24) has also been obtained by Kawamura for the scattering of an
electron on a screw dislocation [16]. In the case of electron scattering on a magnetic flux
line the wavenumber k is essentially replaced by the total magnetic flux � [14]. Whereas k is
restricted by the Debye cut-off, � can be tuned over a wide range which allows one to observe
the oscillatory behaviour of the scattering cross section due to the sine function in (24).

The common feature of all these seemingly unrelated physical objects is the non-
trivial topology of space. As mentioned in [17] and worked out in [18] for the case of
electron scattering, material deformations due to the defect may also markedly affect the
scattering behaviour. The discussion of similar effects in the present case due to the effective
coefficients (10) will be presented elsewhere.
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